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Harmonic balance has established itself as an impor-

tant technique for simulating high frequency circuits.

However, this simulator struggles on strongly nonlin-

ear circuits, particularly if there are several input sig-
nals at different frequencies.

An important observation is that multi-tone nonlin-

ear circuits usually react in a strongly nonlinear fash-

ion in response to one signal, but in near-linear fash-

ion in response to the others. In this paper we present

an extension of harmonic balance that exploits tlhese

properties to reduce the time and memory required to

perform accurate circuit-level frequency-domain sim-

ulation of mixers.

1 Introduction

The most popular method for simulating high fre-

quency circuits is harmonic balance (HB) [kundert90].

However, using HB to simulate communication cir-

cuits that have two or more input tones will typically

be a slow and memory-consuming process. An im-

portant observation is that these circuits typically re-

spond in a strongly nonlinear fashion to only one in-

put signal (the kmge signal). Commercial harmonic

balance simulators such as HP’s Microwave Nonlin-

ear Simulator (MNS) provide analyses where they lin-

earize the harmonic balance equations of the circuit

about the solution that results when only the large

signal is applied [held78, kerr79] and apply the small

signal to the resulting linearized periodically time-

varying circuit. However, this method gives no spuri-

ous frequencies of the small signal.

This paper proposes a new harmonic balance

*This work was sponsored by The Research Council o.f
Norway and Nera AS, 5061 Kokstad, Norway.

method for simulating the large / small signal prob-

lem that exploits its nature — strongly nonlinear for

the large signal and weakly nonlinear for the small

signal. The technique, in this paper called paramet-

ric harmonic balance (PHB), is based on partitioning

the simulation into two stages. The first stage solves

a strongly nonlinear problem and the second solves a
weakly nonlinear perturbation of the first. As a result,

PHB becomes much faster and uses much less mem-

ory than HB on circuits such as mixers. Therefore it

is possible to simulate those circuits at an ordinary

workstation, with enough harmonics to assure accu-

rate results.

z The Method

An electronic circuit constructed of nonlinear resis-

tors, nonlinear capacitors, and lumped and distributed

linear components may be described in the frequency

domain with the following equation [kundert90]

H(v) = Yv +!2Q(V) + qv) – u = o (1)

where I(V) is the vector of nonlinear resistor node

currents, Q(V) is the vector of nonlinear capacitor

charges, and Y is the phasor representation of the

node admittance matrix for the linear components

(lumped and distributed). Equation (1) is most ef-

fectively solved by using the Newton-Raphson algo-

rithm [ortega70].

JFf(v(q(v(~+l) – Vq = –H(vq (2)

In this paper we are focusing on circuits with the

special input U = UL + US. The circuit will respond
with V s VL + VS. Usually, UL represents the local

oscillator signal, which is large in the sense that the

circuit responds in a strongly nonlinear fashion — Vi,.

US represents the input signal, which is small in the

sense that the circuit responds in a weakly nonlinear

fashion — VS.
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2.1 Stage 1

In stage 1 we set US = O and force the circuit with

U = UL. The cbcuit will respond with V = VL. For

simplicity, we will assume that UL, and hence VL, is

periodic. To make the problem tractable, we need to

bound the number of harmonics by assuming energy

in harmonics greater than 2i14 — 1 is negligible. Thus,

2iM frequencies are included in the first stage. Using

double the number harmonics in the first stage gives

less aliasing error in the DFT and a better Jacobian

(better convergence) in stage 2. We then have Y E

C2NMX2NM , Q c C’NM, I E C’NM, UL E C’NM and

VL c C’NM. N is the number of nodes in the circuit.

JIGC ‘NM x ‘NM given by (3) is the Jacobian in

stage 1.

i3Q(VL) 8~(vL)
J1(VL)=Y+fl ~v +- (3)

2.2 Stage 2

Two small tones with ills – 1 harmonics used for each,

give R = Ms , (Ms – 1)+ 1 small tone frequencies

when the diamond truncation is used (see figure 1).

We write US = [ U1 U2 . . UR]T and V5 =

[ VI V2 . . V~ ]T, where Ul, VI EC2NM and U,,

v, ~ CN(2M-1), r = 2,3 , . . . . R. VL is already known

when stage 2 starts, and therefore UL and VL may be

included ;n the circuit.

Qr(vs) =

Q.(

and

VI

[1[
VL + VI VL

v’
)=CA( : )-Q,( 0 )

vRF vRp o

(4)

Q(vs) = [ Q,(vs) Q’(vs) . . . QR(vs) ]~ (5)

The same is done to get f(VS). This change causes the

circuit to become a parametric circuit [locherer82].

Equation (6) describes the problem in stage 2.

II(VS) = [ H1(VS) ff’(v~) 17~1

where

Hr(vs) = Yrvr + QXjr(vs) + f.(vs)
T= 1,2 ,. ... R

VS) ]“ (6)

-Up=o

(7)

J2 E CNK ‘NK given by (8) is the Jacobian in stage 2.

K=(R-l) (2itf–l)+2Af.

J2WS) = [Jr,m(vs)], n,r2 = 1,2, . . ..R

where

J,,,,(%) =

{

~Qrl Ws) ~ af;;vs) ,
‘rl + ‘r, av

,2
rl = rz

PZ

f-l
ml (Vs) ‘3f.1 (Vs)

~1 wr2 +TiTyJ
rI # r’

(8)

To accelerate the Newton-Raphson iteration we

make two approximations to the Jacobian J2. First,

we apply Samanskii’s method [ortega70]. Sec-

ond, we apply nonlinear block Gauss-S eidel relax-
ation [ortega70]. The motivation for doing these

simplifications, is the assumption that the circuit is

weakly nonlinear for the small signal. This implies

that the numbers in Jr,,, (VS), r~ #r’ are small com-

pared to the numbers in J.,r, (Vs ), rl = r’. Thus the

iterative method in stage 2 may be described by (9).

diag (J~~(V~o)), J22(V~o)), . . . . JRR(V~O))) .

(v-+’) - v:’)) ~ –qvy)

j=o, 1,2, . . . (9)

with J11 E C’NM x ‘NM and JTT E CN(2M-11XN(2M–1)

with r=2,3, . . ..R.

Nonlinear Gauss-Seidel relaxation [ortega70] is ap-

plied to solve (9), which gives the algorithm described

by (10).

Jm(Vjo))(V:~+l) – V:~)) ~

–Z. ([ vy+l) . . . v;<~l) v:~) . . . v{) ]T)

r=l,2, . . ..R (lo)

with j=0,1,2, . .. and

For T = 1, (10) must be the same equation as the one
used in stage 1, to improve convergence in stage 2.

An ordinary DFT is used in the transformation

between frequency and time domain. To make this

possible the false frequency approach [kundert90] is

used, optimized for this large / small signal problem

(see figure 1).
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Figure 1: Preparing the vector before applying the

DFT. This approach maintains the aliasing pattern of

stage 1, which improves convergence in stage 2.

3 Computational Costs

The memory needed to store the Jacobian in HB is

order (JJR)21V, while that of PHB is order Lf2RN.

The memory use is roughly R times higher in HB.

The operations needed for factoring the Jacobian in

HB is order (MR)3NJ (J is the number of times the

Jacobian has to be loaded and factored), while that of
PHB is order M3RN. Even if Samanskii’s method is

used to speed up HB, the cost to factor the Jacobian

is still roughly R2 timesmore expensive.

4 Results

In this section we apply PHB to the following four

mixers.

1.

2.

3

Double balanced image rejection diode mixer

with passive baluns. Lumped element circuit.

Contains 8 diodes, 35 resistors, 33 capacitors and

29 inductors. ill = 16, R = 13 and N = 88.

Double balanced image rejection diode mixer

with passive baluns. Distributed elements in the

microwave part. Contains 8 diodes, 19 resistors,

14 capacitors, 12 inductors and 13 transmission

lines. ill = 16, R = 13 and N = 80.

Double balanced image rejection resistive FET

mixer with active high frequency baluns (large

signal and mixed si&al)
quency baluns (moderate

and passive low fre-
signal). Contains 17

Circuit 1 2 3 4

Passive I 97 45 lU I 70 52

components lU + 13 di lU lU

Active 8 8 17 21
components dio dio FETs FETs

N 88 80 98 105

M 16 16 8 8

R 13 13 13 13

Time lm 2m lm Im

(Stage 1) 51s 46s 31s 38s

Time 46m 50m 59m 36m

(Stage 2) 36s 20s 36s

Time 2d 3d ld

(HB) 3h lh 7h 9h

Mem [Mb] 8.3 7.!5 2.2 2.3

(PHB)

Mem [Mb] 108 97.5 28.6 29.9

(HB)

Table 1: Simulation times and memory use for PHB

on four mixers. The time-use for HB is estimated. lU

= lumped, di = distributed, dio = diodes, d = davs,

h=

4,

hours, m = minutes and s = seconds.’ “

transistors, 28 resistors, 25 capacitors, 17 induc-

tors. M = 8, R = 13 and N = 98.

Unbalanced distributed FET mixer with active

combiner for large signal and moderate signal.

Contains 21 transistors, 8 resistors, 4 capacitors

and 40 inductors. M = 8, R = 13 and N = 105.

In all test circuits we have used the same frequencies:

f~ = 6 GHz, j’Sl = 69 MHz, fs~ = 71 MHz. 3

harmonics used for each small signal, give R = 13.

The simulating times in table 1 is for one point (Circ.

1, 2, 3: -6.48 dBm and 4: -42 dBm) in figure 2 and

figure 3. All simulations are done on a SUN IPC

(Spare 1) workstation.

5 Conclusion

PHB has proved to have a strong convergence,
even though the Jacobian is simplified for making

the method nearly R2 times faster than HB. The

simulation-times were not compared in practice be-

cause HB needs nearly R times the memory to
run. Since no computer was available that had suf-

ficient memory to run standard harmonic balance, its

simulation-times had to be estimated.
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Figure 2: Output from four mixers. Pin is the small

signal input.
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