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Abstract

Harmonic balance has established itself as an impor-
tant technique for simulating high frequency circuits.
However, this simulator struggles on strongly nonlin-
ear circuits, particularly if there are several input sig-
nals at different frequencies.

An important observation is that multi-tone nonlin-
ear circuits usually react in a strongly nonlinear fash-
ion in response to one signal, but in near-linear fash-
ion in response to the others. In this paper we present
an extension of harmonic balance that exploits these
propertics to reduce the time and memory required to
perform accurate circuit-level frequency-domain sim-
ulation of mixers.

1 Introduction

The most popular method for simulating high fre-
quency circuits is harmonic balance (HB) [kundert90].
However, using HB to simulate communication cir-
cuits that have two or more input tones will typically
be a slow and memory-consuming process. An im-
portant observation is that these circuits typically re-
spond in a strongly nonlinear fashion to only one in-
put signal (the large signal). Commercial harmonic
balance simulators such as HP’s Microwave Nonlin-
ear Simulator (MNS) provide analyses where they lin-
earize the harmonic balance equations of the circuit
about the solution that results when only the large
signal is applied [held78, kerr79] and apply the small
signal to the resulting linearized periodically time-
varying circuit. However, this method gives no spuri-
ous frequencies of the small signal.

Thie paper proposes a new harmonic balance
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method for simulating the large / small signal prob-
lem that exploits its nature — strongly nonlinear for
the large signal and weakly nonlinear for the small
signal. The technique, in this paper called paramet-
ric harmonic balance (PHB), is based on partitioning
the simulation into two stages. The first stage solves
a strongly nonlinear problem and the second solves a
weakly nonlinear perturbation of the first. As a result,
PHB becomes much faster and uses much less mem-
ory than HB on circuits such as mixers. Therefore it
is possible to simulate those circuits at an ordinary
workstation, with enough harmonics to assure accu-
rate results.

2 The Method

An electronic circuit constructed of nonlinear resis-
tors, nonlinear capacitors, and lumped and distributed
linear components may be described in the frequency
domain with the following equation [kundert90]

HV)=YV+QQV)+I(V)-U=0 (1)

where I(V) is the vector of nonlinear resistor node
currents, @Q(V) is the vector of nonlinear capacitor
charges, and Y is the phasor representation of the
node admittance matrix for the linear components
(lumped and distributed). Equation (1) is most ef-
fectively solved by using the Newton-Raphson algo-
rithm [ortega70].

JH(V(j))(V(j+1) — vy = —g W) (2)

In this paper we are focusing on circuits with the
special input U = UL + Us. The circuit will respond
with V = Vi + Vs. Usually, UL represents the local
oscillator signal, which is large in the sense that the
circuit responds in a strongly nonlinear fashion — Vy,.
Us represents the input signal, which is small in the
sense that the circuit responds in a weakly nonlinear
Tashion — Vg.
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2.1 Stage 1l

In stage 1 we set Us = 0 and force the circuit with
U = Uy,. The circuit will respond with V = V. For
simplicity, we will assurmme that Ur, and hence V7, is
periodic. To make the problem tractable, we need to
bound the number of harmonics by assuming energy
in harmonics greater than 2M — 1 is negligible. Thus,
2M frequencies are included in the first stage. Using
double the number harmonics in the first stage gives
less aliasing error in the DFT and a better Jacobian
{better convergence) in stage 2. We then have ¥V €
CQNMXZNM7 Q c CZNM’ Ie CZNMJ UL € C2NM and
Vi € C2NM | N is the number of nodes in the circuit.

Ji € CPNMx2NM given by (3) is the Jacobian in
stage 1.

L(VD) =Y + 93%(“//” + 8%(3” 3)

2.2 Stage 2

Two small tones with Mg — 1 harmonics used for each,
give R = Mg - (Mg — 1) + 1 small tone frequencies
when the diamond truncation is used (see figure 1).
We write Ug = [ U1 Us Ur |¥ and Vs =
[ Vl V2 . VR ]T, where Ul, V1 S C2NM and Ur,
Ve e CNEM=1) =93 R,V is already known
when stage 2 starts, and therefore Uy, and Vi, may be
included in the circuit.

@r(Vs) =
Wi Vi+W Vi
- Va Va 0
o p=al 0 D-e( . D
Ve Vap 0
(4)
and

QVs) =1 Qu(Vs) Qa(Vs) ... Qu(Vs) I" (5)

The same is done to get (V). This change causes the

circuit to become a parametric circuit [locherer82).
Equation (6) describes the problem in stage 2.

H(Vs)=[ H1(Vs) Ha(Vs) Hr(Vs) 1° (6)
where
H,(Vs) =Y,V + 2 Qr(Vs) + I, (Vs) — Up = 0
r=12,...,R
(M)

1362

Jo € CNEXNE given by (8) is the Jacobian in stage 2.
K=(R-1)-(2M —-1)+2M.

J2(V5) = [‘]7‘17‘2(‘/5)]» ry, T2 = 1>2>-~-)R

where

“T‘1T2(LS) -
8Q~,, V afr Vv
Yvrl er 152 s) 1("25)’ P = P
Q BNT Vs af, Vs
1 Qa‘/l 5'2 ) 61‘/(7'2 )3 ! 1 ‘#‘ 1 2

(®)

To accelerate the Newton-Raphson iteration we
make two approximations to the Jacobian Jy. First,
we apply Samanskii’s method [ortega70]. Sec-
ond, we apply nonlinear block Gauss-Seidel relax-
ation [ortega70]. The motivation for doing these
simplifications, is the assumption that the circuit is
weakly nonlinear for the small signal. This implies
that the numbers in J,.,,,(Vs), r1 # r2 are small com-
pared to the numbers in J; ,,(Vs), ry = r2. Thus the
iterative method in stage 2 may be described by (9).

diag <J11(V5§0)), Jgg(VéO)), R JRR(VS(O))> .
(v = vy = —H (V)
i=0,12,... (9)
with Ji; € C2NMX2NM ang J.,. € ¢N@M-1)xN(2M-1)
with r=2/3,..., R.
Nonlinear Gauss-Seidel relazation [ortega70] is ap-

plied to solve (9), which gives the algorithm described
by (10).

Jrr(VéO))(W(j+1) _ V;-(j)) —

. . . T
—Hr([ p+y ylth ) v ] )
r=1,2,....R (10)
with 7 =0,1,2,...and
8Q.(V{”) oL
I (VY =y, +Q, 2%0Vs rils

For » = 1, (10) must be the same equation as the one
used in stage 1, to 1mprove convergence In stage 2.

An ordinary DFT is used in the transformation
between frequency and time domain. To make this
possible the false frequency approach [kundert90] is
used, optimized for this large / small signal problem
(see figure 1).
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Figure 1: Preparing the vector before applying the
DFT. This approach maintains the aliasing pattern of
stage 1, which improves convergence in stage 2.

3 Computational Costs

The memory needed to store the Jacobian in HB is
order (M R)?N, while that of PHB is order M?RN.
The memory use is roughly R times higher in HB.

The operations needed for factoring the Jacobian in
HB is order (M R)®*NJ (J is the number of times the
Jacobian has to be loaded and factored), while that of
PHB is order M3RN. Even if Samanskii’s method is
used to speed up HB, the cost to factor the Jacobian
is still roughly R? times more expensive.

4 Results

In this section we apply PHB to the following four
INiXers.

1. Double balanced image rejection diode mixer
with passive baluns. Lumped element circuit.
Contains 8 diodes, 35 resistors, 33 capacitors and
29 inductors. M = 16, R = 13 and N = 88.

2. Double balanced image rejection diode mixer
with passive baluns. Distributed elements in the
microwave part. Contains 8 diodes, 19 resistors,
14 capacitors, 12 inductors and 13 transmission
lines. M =16, R =13 and N = 80.

3. Double balanced image rejection resistive FET
mixer with active high frequency baluns (large
signal and mixed signal) and passive low fre-
quency baluns (moderate signal). Contains 17
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Circuit 1 2 3 4
Passive 97 45 lu 70 52
components | lu | + 13 di lu lu

Active 8 8 17 21
components | dio dio FETs | FETs
N 88 80 98 105
M 16 16 8 8
R 13 13 13 13
Time 1m 2m Im Im

(Stage 1) | 5ls 46s 31s 38s
Time 46m 50m 59m | 36m

(Stage 2) 36s 20s 36s
Time 2d 3d 1d
(HB) 3h 1h 7Th | 9h
Mem [Mb] | 83 | 75 52 | 23
(PHB)
Mem [Mb] | 108 97.5 28.6 | 299
(HB)

Table 1: Simulation times and memory use for PHB
on four mixers. The time-use for HB is estimated. lu
= lumped, di = distributed, dio = diodes, d = days,
h = hours, m = minutes and s = seconds.

transistors, 28 resistors, 25 capacitors, 17 induc-
tors. M =8, R=13 and N = 98.

4. Unbalanced distributed FET mixer with active
combiner for large signal and moderate signal.

Contains 21 transistors, 8 resistors, 4 capacitors
and 40 inductors. M =8, R =13 and N = 105.

In all test circuits we have used the same frequencies:
fL =6 GHZ, f51 = 69 MHZ, fsg = 71 MHz. 3
harmonics used for each small signal, give R = 13.
The simulating times in table 1 is for one point (Cirec.
1, 2, 3: -6.48 dBm and 4: -42 dBm) in figure 2 and
figure 3. All simulations are done on a SUN IPC
(Sparc 1) workstation.

5 Conclusion

PHB has proved to have a strong convergence,
even though the Jacobian is simplified for making
the method nearly R? times faster than HB. The
simulation-times were not compared in practice be-
cause HB needs nearly R times the memory to
run. Since no computer was available that had suf-
ficient memory to run standard harmonic balance, its
simulation-times had to be estimated.
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Figure 2: Output from four mixers. Pin is the small
signal input.
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